▎ 摘 要
We investigate the stiffening effect of graphene sheets dispersed in polymer nanocomposites using the Mori-Tanaka micromechanics method. The effective elastic moduli of graphene sheet-reinforced composites are first predicted by assuming that all the graphene sheets are either aligned or randomly oriented in the polymer matrix while maintaining their platelet-like shape. It is shown that a very low content of graphene sheets can considerably enhance the effective stiffness of the composite. The superiority of graphene sheets as a kind of reinforcement is further verified by a comparison with carbon nanotubes, another promising nanofiller in polymer composites. In addition, we analyze several critical physical mechanisms that may affect the reinforcing effects, including the agglomeration, stacking-up and rolling-up of graphene sheets. The results reveal the extent to which these factors will negatively influence the elastic moduli of graphene sheet-reinforced nanocomposites. This theoretical study may help to understand the relevant experimental results and facilitate the mechanical characterization and optimal synthesis of these kinds of novel and highly promising nanocomposites.