▎ 摘 要
In this work, we report a new concept of adaptive "ensemble aptamers" (ENSaptamers) that exploits the collective recognition abilities of a small set of rationally designed, nonspecific DNA sequences to identify molecular or cellular targets discriminatively. In contrast to in vitro selected aptamers, which possess specific "lock-and-key" recognition, ENSaptamers rely on pattern recognition that mimics natural olfactory or gustatory systems. Nanographene oxide was employed to provide a low-background and highly reproducible fluorescent assay system. We demonstrate that this platform provides a highly discriminative and adaptive tool for high precision identification of a wide range of targets for diagnostic and proteomic applications with a nearly unlimited supply of ENSaptamer receptors.