▎ 摘 要
Monitoring the environment using electronic systems in harsh environments requires materials and processes that can withstand harsh environments. Environmental harshness can come from the surrounding temperature, varying pressure, intense radiation, reactive chemicals, humidity, salinity, or a combination of any of these conditions. Here, we present graphene as a candidate for a multisensory flexible platform in harsh-environment applications. We designed sensors for harsh environments like high temperature (operating range up to 650 degrees C), high salinity, and chemical harsh environments (pH sensing) on a single flexible polyimide sheet. The high-temperature graphene sensor gives a sensitivity of 260% higher than the Pt-based sensor. The temperature sensor acts between metal and a thermistor, thereby providing an opportunity to classify the region depending on temperature (<210 degrees C linear and >210 degrees C up to 650 degrees C as quadratic). Improved performances are observed for salinity and pH sensing in comparison with existing non-graphene solutions. The simple transfer free fabrication technique of graphene on a flexible platform and laser-induced graphene on a flexible polyimide sheet opens the potential for harsh-environment monitoring and multisensory graphene skin in future applications. (C) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).