• 文献标题:   Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution
  • 文献类型:   Article
  • 作  者:   WANG H, YUAN XZ, WU Y, HUANG HJ, ZENG GM, LIU Y, WANG XL, LIN NB, QI Y
  • 作者关键词:   graphene oxide, adsorption, kinetic, zinc
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   Hunan Univ
  • 被引频次:   225
  • DOI:   10.1016/j.apsusc.2013.04.133
  • 出版年:   2013

▎ 摘  要

In this study, graphene oxide (GO) was synthesized via modified Hummers' method, and characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS). The adsorption of Zn(II) on GO as a function of pH, adsorbent dosage, foreign ions, contact time, and temperature was investigated using batch technique. Results showed that the suitable pH for Zn(II) removal was about 7.0, and the optimal dosage was 2 mg. The adsorption of Zn(II) onto GO increased sharply within 20 min and obtained equilibrium gradually. Meanwhile, foreign ion and temperature also affected the adsorption performance of GO. The adsorption process was found to be well described by the pseudo-second-order rate model. Equilibrium studies indicated that the data of Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacity for Zn(II) was up to 246 mg/g with a Langmuir adsorption equilibrium constant of 5.7 L/g at 20 degrees C. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Zn(II) sorption on GO was an exothermic and spontaneous process in nature. The possibility of Zn(II) recovery was investigated and the result revealed that the maximum Zn(II) recovery yield was achieved with hydrochloric acid. (C) 2013 Elsevier B. V. All rights reserved.