▎ 摘 要
A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2- S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.