• 文献标题:   Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning
  • 文献类型:   Article
  • 作  者:   KINDNESS SJ, ALMOND NW, WEI BB, WALLIS R, MICHAILOW W, KAMBOJ VS, BRAEUNINGERWEIMER P, HOFMANN S, BEERE HE, RITCHIE DA, DEGL INNOCENTI R
  • 作者关键词:   electromagnetically induced transparency, graphene, metamaterial, terahertz
  • 出版物名称:   ADVANCED OPTICAL MATERIALS
  • ISSN:   2195-1071
  • 通讯作者地址:   Univ Cambridge
  • 被引频次:   11
  • DOI:   10.1002/adom.201800570
  • 出版年:   2018

▎ 摘  要

Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid optical modes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of approximate to 100 GHz operating at 1.5 THz. The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications.