• 文献标题:   Gradient heating-induced bi-phase synthesis of carbon quantum dots (CQDs) on graphene-coated carbon cloth for efficient photoelectrocatalysis
  • 文献类型:   Article
  • 作  者:   ALI M, ANJUM AS, BIBI A, WAGEH S, SUN KC, JEONG SH
  • 作者关键词:   nitrogen doped carbon quantum dot, temperature effect, dye degradation, photocatalyst electrocatalyst, graphene modification, textile substrate, metal free catalyst
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.1016/j.carbon.2022.05.040 EA MAY 2022
  • 出版年:   2022

▎ 摘  要

The challenges of secondary pollution and limited stability of metallic catalysts/quantum dots that are used for water treatment must be resolved in the emerging ecofriendly environmental systems. Conversely, carbon ma-terials, specifically, conventional carbon quantum dots (C-CQDs) have emerged as an abundant, stable, and biocompatible alternative for visible-light-driven photocatalysts, that are used for water treatment. Despite these advantages, the fast charge recombination in quantum-confined systems, complex purification, and limited optoelectronic performance are bottlenecks in the practical application of C-CQDs. To address these issues, we proposed a scalable structural design of C-CQDs with enhanced photocatalytic properties. The synthesis process of CQDs was modified to yield a highly amorphous core carbon quantum dots (AC-CQDs), which was controlled by varying the synthesis temperature. The low initial temperature during the synthesis of the AC-CQDs yields an amorphous core, which provides a high electrical resistance; hence, the indirect recombination occurring through core conductivity is significantly suppressed. To ensure scalable synthesis and stability, AC-CQDs were directly grown on reduced graphene oxide, which was coated on a carbon fabric to fabricate a textile-structured electrode. Efficient charge separation in the proposed catalyst electrode structure offers significantly improved photoelectrocatalytic activity, i.e., 100% effluent dye degradation in 25 min.