▎ 摘 要
Due to its good biodegradability and mechanical properties, magnesium alloys are considered as the ideal candidate for the cardiovascular stents. However, the rapid degradation in human physiological environment and the poor biocompatibility seriously limit its application for biomaterials. In the present study, a chitosan/heparinized graphene oxide (Chi/HGO) multilayer coating was constructed on the AZ31B magnesium alloy surface using layer-by-layer (LBL) method to improve the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectrum (RAMAN), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that a dense and compact Chi/HGO multilayer coating was fabricated on the magnesium alloy surface. The results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), pH value changes and magnesium ion release suggested that the multilayer coating can significantly enhance the corrosion resistance of the magnesium alloy. Moreover, the Chi/HGO multilayer coating could not only significantly reduce the hemolysis rate and platelet adhesion, but also promote the adhesion and proliferation of endothelial cells. Therefore, the Chi/HGO multi layer coating can simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys.