• 文献标题:   Frequency-tunable terahertz absorbers based on graphene metasurface
  • 文献类型:   Article
  • 作  者:   CHEN M, SUN W, CAI JJ, CHANG LZ, XIAO XF
  • 作者关键词:   graphene, metasurface, absorber, thz
  • 出版物名称:   OPTICS COMMUNICATIONS
  • ISSN:   0030-4018 EI 1873-0310
  • 通讯作者地址:   Guilin Univ Elect Technol
  • 被引频次:   29
  • DOI:   10.1016/j.optcom.2016.07.077
  • 出版年:   2017

▎ 摘  要

We present efficient designs of graphene-based thin absorbers, which are capable of near-unity absorption of the incident electromagnetic waves in the terahertz regime. Primarily, a single-frequency absorber is proposed. Subsequently, by simply stacking the double layer graphene metasurface with various geometric dimensions, the dual-frequency absorption and broadband absorption are realized respectively. Results demonstrate that the absorptivity of the single-frequency absorber reaches 99.51% at 2.71 THz when the Fermi energy is fixed at 0.9 eV. The dual-frequency absorber can simultaneously work at two frequencies with its absorptivity being 98.94% for 1.99 THz and 99.1% for 2.69 THz. The bandwidth of absorption rate above 90% expands three times when compared with the former single frequency absorber. Additionally, it possesses the polarization-insensitive and large angle tolerance properties. More importantly, the absorption frequency can be dynamically controlled by adjusting Fermi energy levels without varying the nanostructure, which exhibits tremendous application values in many fields. (C) 2016 Elsevier B.V. All rights reserved.