• 文献标题:   Graphene-amplified femtosensitive aptasensing of estradiol, an endocrine disruptor
  • 文献类型:   Article
  • 作  者:   RATHER JA, KHUDAISH EA, KANNAN P
  • 作者关键词:  
  • 出版物名称:   ANALYST
  • ISSN:   0003-2654 EI 1364-5528
  • 通讯作者地址:   Sultan Qaboos Univ
  • 被引频次:   3
  • DOI:   10.1039/c7an02092a
  • 出版年:   2018

▎ 摘  要

We report the construction of a novel electrochemical femtomolar aptasensing APT-ERGO/GCE interface based on the covalent immobilization of 38-mer amine-functionalized (NH2-APT) 17-estradiol (E2) DNA aptamers on a graphene amplifying platform. Graphene oxide (GO) was synthesized and characterized by using FTIR, UV-vis spectroscopy, XRD spectroscopy, and SEM technique. The strategy for the construction of the E2-aptasensing interface involves in a three-step modification process. (i) First, we carried out the electrochemical reduction of GO on the GCE electrode to form ERGO/GCE. (ii) Then, as an impact strategy, the E2-aptamers (NH2-APT) were further immobilized on the surface of the ERGO/GCE interface through electrochemical reduction of surface-functionalized diazonium salts. This step includes electrografting of ERGO/GCE by electrochemical reduction of the diazonium salt (ClN2+-Ph-COOH) to obtain the ERGO/GCE-Ph-COOH-modified electrode. (iii) Finally, the free carboxyl groups on the ERGO/GCE-Ph-COOH surface were conjugated with NH2-APT through formation of carbodiimide to afford an aptasensing APT-ERGO/GCE interface. The presence of ERGO as an amplifying platform led to the successful immobilization of E2-aptamers with a surface coverage of 1.9 x 10(13) molecule per cm(2), which is higher than the values obtained in other reported methods. The constructed aptasensing APT-ERGO/GCE interface was appraised using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The synergetic effect of high affinity and specificity of E2-aptamers and graphene platform was beneficial for the novel femtosensitive label-free electrochemical aptasensing APT-ERGO/GCE interface for the detection of [E2]. The oxidation current peaks at the aptasensing APT-ERGO/GCE interface were proportional to [E2] over two different concentration linearity ranges 1.0 x 10(-15) mol L-1-9.0 x 10(-12) mol L-1-1.2 x 10(-11) mol L-1 to 2.3 x 10(-10) mol L-1 with a limit of detection (LOD) of 0.5 x 10(-15) mol L-1. This aptasensing APT-ERGO/GCE interface was employed as a femtomolar tool for the determination of [E2] in the environmental and pharmaceutical samples such as wastewater (spiked) and pharmaceutical dosages.