▎ 摘 要
The application of semiconductor photocatalysts with multiple functions is important in the field of photocatalysis technology. As a result, a unique three-dimensional (3D) porous AgVO3/BiVO4/graphene aerogel (AgVO3/BiVO4/GA) was fabricated by using in situ ion exchange and a hydrothermal strategy. The obtained AgVO3/BiVO4/GA shows well-organized heterostructures in which AgVO3 with a rod-like morphology is well dispersed in the 3D graphene aerogel network. Moreover, AgVO3 is used as a precursor for BiVO4 growing on its surface via in situ ion exchange, which effectively avoids the agglomeration of AgVO3 and BiVO4 in the reaction. Benefitting from a reasonable composition and structure, AgVO3/BiVO4/GA possesses a brilliant photodegradation rate towards methyl orange (MO) (93% removal efficiency in 54 min) and tetracycline hydrochloride (TCH) (approximately 92% removal rate within 80 min) and bacteriostatic ability for E. coli (100% antiseptic rate in 30 min), as well as prominent photodegradation activity after five cycles. In addition, E. coli was used as an ecological indicator to evaluate the aquatic toxicity of TCH, and the results confirm that the prepared AgVO3/BiVO4/GA composite can effectively reduce the aquatic toxicity of TCH.