• 文献标题:   Rational Design of Novel Efficient Palladium Electrode Embellished 3D Hierarchical Graphene/Polyimide Foam for Hydrogen Peroxide Electroreduction
  • 文献类型:   Article
  • 作  者:   YANG M, ZHANG CH, LV QT, SUN GH, BI CL, GUO SX, DONG HX, LIU LJ
  • 作者关键词:   graphene, polyimide foam, pd nanoparticles catalyst, hydrogen peroxide electroreduction, 3d hierarchical structure
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Harbin Engn Univ
  • 被引频次:   2
  • DOI:   10.1021/acsami.9b19656
  • 出版年:   2020

▎ 摘  要

The electrocatalytic applications of traditional polyimide film and carbon nanomaterials are hindered due to a shortage of three-dimensional hierarchical conductivity and porous structure. Herein, a novel polyimide-based electrode based on a highly efficient palladium nanocatalyst embellished three-dimensional reduced graphene oxide/polyimide foam (Pd/3D RGO@PI foam, signed PRP) toward H2O2 electroreduction was designed and prepared through thermal foaming procedure, followed by facile dip-drying method and electrodeposition. As expected, such a binder-free, 3D hierarchical structure PRP electrode presented high catalytic property, good stability, as well as low activation energy toward H2O2 electroreduction during the electrochemical measurement period. The PRP electrode showed a reduction current density of 810 mA.cm(-2) at -0.2 V (vs Ag/AgCl) in 2.0 mol.L-1 H2SO4 and 2.0 mol.L-1 H2O2. Moreover, the PRP electrode also illustrated good reproducibility and repeatability. Reproducibility presented almost 95.8% of the initial current density after 1000 cycles test. Also, the activation energy of H2O2 electroreduction on 3D PRP electrode was 21.624 kJ.mol(-1). Benefiting from the 3D hierarchical structure and efficient catalyst, the PRP electrode exhibited excellent electrocatalytic performance and was considered to be a potential candidate material for fuel cells.