• 文献标题:   A uniformly anchored zirconocene complex on magnetic reduced graphene oxide (rGO@Fe3O4/ZrCp2Clx (x=0, 1, 2)) as a novel and reusable nanocatalyst for synthesis of N-arylacetamides and reductive-acetylation of nitroarenes
  • 文献类型:   Article
  • 作  者:   BAYZIDI M, ZEYNIZADEH B
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1039/d2ra02293a
  • 出版年:   2022

▎ 摘  要

In this study, a crafted zirconocene complex on rGO@Fe3O4 as a novel magnetic nanocatalyst was synthesized and then characterized using FT-IR, SEM, EDX, VSM, ICP-OES, TGA, BET and MS analyses. Next, catalytic activity of the prepared nanocomposite rGO@Fe3O4/ZrCp2Clx (x = 0, 1, 2) towards successful reduction of aromatic nitro compounds to arylamines using N2H4 center dot H2O (80%) was investigated. The examined nanocatalyst also showed perfect catalytic activity for reductive-acetylation of aromatic nitro compounds to the corresponding N-arylacetamides without isolation of the prepared in situ amines using the N2H4 center dot H2O/Ac2O system. Furthermore, acetylation of the commercially available arylamines to the corresponding N-arylacetamides was carried out by acetic anhydride in the presence of the rGO@Fe3O4/ZrCp2Clx (x = 0, 1, 2) nanocomposite. All reactions were carried out in refluxing EtOH as a green solvent to afford the products in high yields. The obtained results exhibited that the nanocomposite of rGO@Fe3O4/ZrCp2Clx (x = 0, 1, 2) showed a great catalytic activity in comparison to rGO and rGO@Fe3O4 as the parent constituents. Recovery and reusability of rGO@Fe3O4/ZrCp2Clx (x = 0, 1, 2) were also examined for 8 consecutive cycles without significant loss of the catalytic activity. This establishes the sustainable anchoring of the zirconocene complex on the surface and mesopores of the rGO@Fe3O4 nanohybrid system.