▎ 摘 要
In the field of polymer/graphene nanocomposites, massive production and commercial availability of graphene are essential. Exfoliation of graphite to obtain graphene is one of the most promising ways to large-scale production at extremely low cost. In this work we illustrate a facile strategy for mass production of few-layered (aecurrency sign 10) graphene (FLG) via the newly explored ball milling. The achieved FLG concentration was determined by UV/Vis spectroscopy. The formation of FLG was proved by measuring the flake thickness by atomic force microscopy (AFM). Further Raman spectral studies indicated that the crystal structure of exfoliated flakes was preserved satisfactorily during this shear-force dominating process. To increase the maximum concentration obtainable, it's critical to make a good parameter assessment. N-methylpyrrolidone (NMP) was used as a dispersing medium and the effect of milling parameters was systematically and quantitatively investigated, thus providing a criterion to optimize the milling process. We established the optimal values for solvent volume and initial weight of graphite. As for milling time, the production of FLG was enhanced with continuous milling according to the power law, but not linearly with increasing milling time. Moreover, the possible mechanism involved in milling process was also explored. Our work provides a simple method for graphite exfoliation and has great potential for improving thermal and electrical conductivity of polymer composites in the fields of engineering.