▎ 摘 要
Higher order shear deformation theory (HSDT) is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived. The developed equations of motion have been applied to study buckling characteristics of nanoplates such as graphene sheets. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions for critical buckling loads of the graphene sheets are presented. Nonlocal elasticity theories are employed to bring out the small scale effect on the critical buckling load of graphene sheets. Effects of (i) nonlocal parameter, (ii) length, (iii) thickness of the graphene sheets and (iv) higher order shear deformation theory on the critical buckling load have been investigated. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the stability analysis of nanoplates and nanoshells. (C) 2009 Elsevier B.V. All rights reserved.