▎ 摘 要
In the present work, we perform first-principles calculations based on density functional theory and non-equilibrium Green's function to study the electronic transport properties of the 10-armchair graphene ribbons devices doped by boron and phosphorus atoms. Two kinds of device show a strong inverse rectification and negative differential resistance (NDR) effect. The effect of doping position on rectifying phenomenon are analyzed by calculating the transmission spectra and the energy band structures of the related electrodes as well as the projected density of states for two devices at different bias. And the observed NDR effect is explained by the local density of states. The results indicate that the asymmetric doping of the impurity atom contributes to the electron transport of the device, being used to design a molecular rectifier with good performance.