• 文献标题:   Competing orders and cascade of degeneracy lifting in doped Bernal bilayer graphene
  • 文献类型:   Article
  • 作  者:   SZABO AL, ROY B
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:  
  • 被引频次:   6
  • DOI:   10.1103/PhysRevB.105.L201107
  • 出版年:   2022

▎ 摘  要

Motivated by recent experiments [H. Zhou et al., Science 375, 774 (2022) and S. C. de la Barrera et al., arXiv:2110.13907], here we propose a general mechanism for valley and/or spin degeneracy lifting of the electronic bands in doped Bernal bilayer graphene, subject to electric displacement (D) fields. A D-field induced layer polarization (LP), when accompanied by a Hubbard repulsion-driven layer antiferromagnet (LAF) and next-nearest-neighbor repulsion-driven quantum anomalous Hall (QAH) orders, lifts the fourfold degeneracy of electronic bands, yielding a quarter metal for small doping, as also observed in ABC trilayer graphene. With the disappearance of the QAH order, electronic bands recover twofold valley degeneracy, thereby forming a conventional or compensated (with majority and minority carriers) half metal at moderate doping, depending on the relative strength of LP and LAF. At even higher doping and for a weak D field only LAF survives and the Fermi surface recovers fourfold degeneracy. We also show that a pure repulsive electronic interaction mediated triplet f -wave pairing emerges from a parent correlated nematic liquid or compensated half metal when an in-plane magnetic field is applied to the system.