▎ 摘 要
We have investigated the lattice thermal transport across the asymmetric tilt grain boundary between armchair and zigzag graphene by nonequilibrium molecular dynamics (NEMD). We have observed significant temperature drop and ultra-low temperature-dependent thermal boundary resistance. More importantly, we find an unexpected thermal rectification phenomenon. The thermal conductivity and Kapitza conductance is direction-dependent. The effect of thermal rectification could be amplified by increasing the difference of temperature imposed on two sides. Our results propose a promising kind of thermal rectifier and phonon diodes based on polycrystalline graphene without delicate manipulation of the atomic structure. (C) 2012 Published by Elsevier Ltd.