▎ 摘 要
In this paper, heat flux in graphene nanoribbons has been studied by using molecular dynamics simulations. It is found that the heat flux runs preferentially along the direction of decreasing width, which demonstrates significant thermal rectification effect in the asymmetric graphene ribbons. The dependence of rectification ratio on the vertex angle and the length are also discussed. Compared to the carbon nanotube based one-dimensional thermal rectifier, graphene nanoribbons have much higher rectification ratio even in large scale. Our results demonstrate that asymmetric graphene ribbon might be a promising structure for practical thermal (phononics) device.