• 文献标题:   Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries
  • 文献类型:   Article
  • 作  者:   ASSEGIE AA, CHUNG CC, TSAI MC, SU WN, CHEN CW, HWANG BJ
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Natl Taiwan Univ Sci Technol
  • 被引频次:   15
  • DOI:   10.1039/c8nr06980h
  • 出版年:   2019

▎ 摘  要

The will to circumvent capacity fading, Li dendrite formation, and low coulombic efficiency in anode-free Li-metal batteries (AFLMBs) requires a radical change in the science underpinning new materials discovery, battery design, and understanding electrode interfaces. Herein, a Cu current collector formed with ultrathin multilayer graphene grown via chemical vapor deposition (CVD) was used as an artificial layer to stabilize the electrode interface and sandwich-deposited Li with Cu. A multilayer graphene film's superior strength, chemical stability, and flexibility make it an excellent choice to modify a Cu electrode. Fabricating an anode bigger than the cathode improved the alignment of the electrodes during assembly, minimizing interfacial stress. Here, 19 mm electrodes when paired with a commercial LiFePO4 cathode (mass loading: approximate to 12 mg cm(-2)) delivered the first-cycle discharge capacities of 147 and 151 mA h g(-1) for bare and multilayer-graphene-protected electrodes, respectively, which could alleviate the big hurdle (initial capacity loss) in anode-free batteries. After 100 round-trip cycles, bare Cu and multilayer-graphene-protected electrodes retained approximate to 46 and approximate to 61% of their initial capacities, respectively, in an ether-based electrolyte at the rate of 0.1 C.