• 文献标题:   High Rate Capability of a LiNi0.84Co0.12Mn0.04O2 Cathode with a Uniform Conducting Network of Functionalized Graphene Nanoribbons for Li-Ion Batteries
  • 文献类型:   Article
  • 作  者:   SHIN D, PARK H, LEE S, PAIK U, SONG T
  • 作者关键词:  
  • 出版物名称:   INDUSTRIAL ENGINEERING CHEMISTRY RESEARCH
  • ISSN:   0888-5885
  • 通讯作者地址:   Hanyang Univ
  • 被引频次:   1
  • DOI:   10.1021/acs.iecr.0c01932
  • 出版年:   2020

▎ 摘  要

LiNixCoyMnzO2 cathode materials are technologically important for high-energy-density Li-ion batteries. However, poor electronic conductivity limits their practical use compared to conventional LiCoO2 cathodes. There are efforts to the use of multiwalled carbon nanotubes (MWCNTs) as a highly conductive agent, but they have poor dispersibility in most polar solvents. Here, we report a rheological behavior of functionalized graphene nanoribbons (GNRs) and their use for a high rate capability of a LiNi0.84Co0.12Mn0.04O2 cathode. The functionalized GNRs are prepared by chemical unzipping MWCNTs, enabling good dispersion in N-methyl-2-pyrrolidone. The improved dispersibility leads to the slurry with fluid-like behavior and an electrode with a uniform conductive network of carbon black/GNRs, improved cohesion strength, and decreased charge transfer resistance. As a result, the electrode shows the highest capacity retention compared to the electrode with only carbon black or carbon black/MWCNTs at a high 4 C-rate.