▎ 摘 要
With the continuous miniaturization and integration of electronic devices, polymeric composites with high dielectric constant and low loss have received more and more attention from the field of research. In this work, a novel chemical modification method to fabricate a three-dimensional filler structure consisting of graphene oxide and carbon nanotube (CNT-g-GO) was proposed. Then this filler was introduced into acrylic resin elastomer (AE), and an approach of solution casting combined with hot pressing was used to fabricate the composite films, besides the physical blending composite films of graphene oxide, carbon nanotube and acrylic resin (CNT/GO/ AE) were also prepared for a comparison. Results show that the composite containing a volume fraction of 6.72 vol% CNT-g-GO exhibits a dielectric constant of 204.3 and a dielectric loss of 0.16 at 100HZ. The hybrid filler of CNT grafted GO further improves the breakdown strength of composites below the 4.5 vol% filler addition. Furthermore, the origin of the dependence of dielectric loss factor on the frequency at the low frequency was studied with a theoretical model, additionally the mechanism on that enhanced interfacial interaction can more effectively influence the dielectric relaxation behaviors of composites was investigated according to Cole-Cole theoretical model.