▎ 摘 要
We study Fe-13 nanoparticles supported on doped graphene and investigate the dissociative adsorption of CO on the nanoparticles using first-principle calculations. It is found that boron doping enhances the binding energy of Fen on the graphene but nitrogen doping reduces it. We show that difference in the work-function and subsequently in the charge transfer causes such behavior in the binding energies. Calculated d-band width and d-band center are well correlated with the Fe binding energy, mostly because of the orbital hybridization effect. We also show that the dissociative adsorption of CO on the Fe-graphene substrate is strongly correlated with the d-band center, which is in turn modulated by the doping concentration. (C) 2015 Elsevier Ltd. All rights reserved.