▎ 摘 要
Nanoscale composites for high-performance electrodes employed in flexible, all-solid-state supercapacitors are being developed. A series of binder-free composites, each consisting of a transition bimetal oxide, a metal oxide, and a metal nitride grown on N-doped reduced graphene oxide (rGO)-wrapped nickel foam are obtained by using a universal strategy. Three different transition metals, Co, Mo, and Fe, are separately compounded with nickel ions, which originate from the nickel foam, to form three composites, NiCoO2@Co3O4@Co2N, NiMoO4@MoO3@Mo2N, and NiFe2O4@Fe3O4@Fe2N, respectively. These as-prepared active materials have similar regular variation patterns in their properties, including better conductivity and battery-mimicking pseudocapacitance, which result in their high whole-electrode capacitance performance [2598.3 F g(-1) (39.85 F cm(-2)), 3472.6 F g(-1) (41.43 F cm(-2)) and 1907.5 F g(-1) (3.41 F cm(-2)) for the composites incorporating Co, Mo, and Fe, respectively]. The as-assembled flexible, all-solid-state NiCoO2@Co3O4@Co2N//KOH/PVA//NiCoO2@Co3O4@Co2N device can be easily bent and exhibits high energy density and power density of 92.8 Wh kg(-1) and 1670.4 W kg(-1), respectively. The universality of this design strategy could allow it to be employed in producing hybrid materials for high-performance energy-storage devices.