▎ 摘 要
Industrial NH3 synthesis highly relies on the Haber-Bosch process which consumes a large amount of energy and emits a massive amount of CO2. Electrochemical N-2 reduction is an eco-friendly and sustainable approach to realize NH3 synthesis under ambient conditions, but its implementation requires efficient electrocatalysts for the N-2 reduction reaction. In this work, a hybrid of Ru2P nanoparticles and reduced graphene oxide is proposed as an efficient electrocatalyst for artificial N-2-to-NH3 fixation with excellent selectivity under ambient conditions. Electrochemical tests in 0.1 M HCl show that such a hybrid achieves a large NH3 yield of 32.8 mu g h(-1) mg(cat.)(-1) and a high faradaic efficiency of 13.04% at -0.05 V vs. the reversible hydrogen electrode. Furthermore, it also exhibits remarkable electrochemical and structural stability. Theoretical calculations reveal that Ru2P-rGO can efficiently catalyze NH3 synthesis with a low energy barrier.