• 文献标题:   Sensitive detection of trace level Cd (II) triggered by chelation enhanced fluorescence (CHEF) "turn on": Nitrogen-doped graphene quantum dots (N-GQDs) as fluorometric paper-based sensor
  • 文献类型:   Article
  • 作  者:   NAKSEN P, BOONRUANG S, YUENYONG N, LEE HL, RAMACHANDRAN P, ANUTRASAKDA W, AMATATONGCHAI M, PENCHAREE S, JARUJAMRUS P
  • 作者关键词:   cadmium ion cd ii, nitrogendoped graphene quantum dots ngqds, fluorescent sensor, paperbased sensor, chelation enhanced fluorescence chef
  • 出版物名称:   TALANTA
  • ISSN:   0039-9140 EI 1873-3573
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1016/j.talanta.2022.123305 EA FEB 2022
  • 出版年:   2022

▎ 摘  要

Cadmium ion (Cd (II)) is a highly toxic heavy metal usually found in natural water. Exposure to Cd (II) can produce serious effects in human organs such as Itai-Itai disease. Therefore, the maximum allowance levels of Cd (II) in drinking water and herbal medicines imposed by the World Health Organization (WHO) are 3 mu g L-1 and 300 mu g kg(-1), respectively. In this work, nitrogen-doped graphene quantum dots (N-GQDs) as a fluorescent sensor for Cd (II) determination was developed in both solution-based and paper-based systems. N-GQDs were synthesized from citric acid (CA) and ethylenediamine (EDA) via the hydrothermal method. The synthesized NGQDs emitted intense blue fluorescence with a quantum yield (QY) of up to 80%. The functional groups on the surface of N-GQDs measured by FTIR were carboxyl (COO-), hydroxyl (OH-), and amine (NH2) groups, suggesting that they could be bound to Cd (II) for complexation. The fluorescence intensity of N-GQDs was gradually enhanced with the increase of Cd (II) concentration. This phenomenon was proved to result from the fluorescence enhancement (turn-on) based on the chelation enhanced fluorescence (CHEF) mechanism. Under the optimum conditions in the solution-based and paper-based systems, the limits of detection (LODs) were found to be 1.09 and 0.59 mu g L-1, respectively. Furthermore, the developed sensors showed relatively high selectivity toward Cd (II) over ten other metal cations and six other anions of different charges. The performance of the sensor in real water and herbal medicine samples exhibited no significant difference as compared to the results of the validation method (ICP-OES). Therefore, the developed sensors can be used as fluorescent sensors for Cd (II) determination with high sensitivity, high selectivity, short incubation time (5 min). As such, the paper-based strategy has excellent promising potential for practical analysis of Cd (II) in water and herbal medicine samples with a trace level of Cd (II) concentrations.