▎ 摘 要
Hybrid supercapacitors have been regarded as next-generation energy storage devices due to their outstanding performances. However, hybrid supercapacitors remain a great challenge to enhance the energy density of hybrid supercapacitors. Herein, a novel approach for high-energy density hybrid supercapacitors based on a laser scribed graphene cathode and AlPO4-carbon hybrid coated H2Ti12O25 (LSG/H-HTO) was designed. Benefiting from high-energy laser scribed graphene and high-power H-HTO, it was demonstrated that LSG/H-HTO delivers superior energy and power densities with excellent cyclability. Compared to previous reports on other hybrid supercapacitors, LSG/H-HTO electrode composition shows extraordinary energy densities of similar to 70.8 Wh/kg and power densities of similar to 5191.9 W/kg. Therefore, LSG/H-HTO can be regarded as a promising milestone in hybrid supercapacitors.