▎ 摘 要
In this work, we have studied the influences of electron-phonon (e-ph) coupling and chemical potential on the boron nitride graphene-like sheet. In particular, by starting the Green's function technique and Holstein model, the electronic density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of this system have been investigated in the context of self -consistent second order perturbation theory which has been implemented to find the electronic self-energy. Our findings show that the band gap size decreases (increases) with e-ph coupling (chemical potential) parameters. The Schottky anomaly (crossover) decreases in EHC (MS) as soon as e-ph coupling increases. Also, the corresponding temperature with Schottky anomaly is considerably affected by e-ph coupling.