• 文献标题:   Coupling solute interactions with functionalized graphene membranes: towards facile membrane-level engineering
  • 文献类型:   Article
  • 作  者:   ARYA V, CHAUDHURI A, BAKLI C
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d2nr05552j EA OCT 2022
  • 出版年:   2022

▎ 摘  要

Optimizing ion transport through nanoporous graphene membranes with intricate engineering at nanoscale levels finds applications ranging from ion segregation to desalination. Such membrane-level engineering often requires futuristic and state-of-the-art micro- and nanofabrication infrastructure making it less accessible to widespread applications. In this study, the effective membrane pore size is modulated using macroscopic membrane functionalization, which, when combined with the solute concentration, can prove to be facile nanoscale engineering towards achieving selectivity. By performing robust molecular dynamics (MD) simulations of aqueous NaCl solution through a nanoporous graphene membrane, we demonstrate that varying membrane wettability influences the structural organization of ions and water molecules both in the vicinity and inside the nanopore, which is manifested in the form of altered permeation characteristics. Moreover, the disparate solvation characteristics of the ionic species in conjunction with the variable van der Waals interactive forces affect the ion-selective nature (Cl- over Na+) of the membrane. The relative hydrophilization, resulting from the effective functionalization of the nanoporous graphene membrane, not only allows greater control over the permeation characteristics of ions and water molecules mediated by an altered depletion ratio but also gives rise to the ion-selective nature of the membrane, thus providing a sound understanding of the transport properties of ion-water solutions through nanoporous materials.