• 文献标题:   Simple synthesis of nitrogen doped graphene/ordered mesoporous metal oxides hybrid architecture as high-performance electrocatalysts for biosensing study
  • 文献类型:   Article
  • 作  者:   CUI MJ, CAO BH, SUN YN, ZHANG YF, WANG H
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Hebei Univ
  • 被引频次:   0
  • DOI:   10.1039/c6ra19496f
  • 出版年:   2016

▎ 摘  要

In the present work, a nitrogen doped graphene/ordered mesoporous metal oxides hybrid architecture (OMM-NGR) was prepared by a convenient procedure for the first time. During the preparation process, nitrogen doping, graphene reduction and ordered mesoporous metal oxides formation were successfully realized in one-step procedure. Transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), elemental mapping, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the as-prepared nanocomposites. The hybrid architecture enables a good combination of electrochemically active metal oxide nanoparticles and graphene sheets, leading to the electrocatalytic advantages of both nitrogen doped graphene and ordered mesoporous metal oxides. The electrocatalytic performance of the nanocomposites was studied by using glucose, L-cysteine, uric acid (UA) and H2O2 as redox probes. The performance of OMM (M: Co, Fe)-NGR is found to be greatly improved compared to NGR. Furthermore, electrocatalytic quantitative and qualitative detection performance of OMM (M: Co, Fe)-NGR have been studied in detail. OMM (M: Co, Fe)-NGR exhibits outstanding electrocatalytic activity towards the probes with low detection limits, high reproducibility, good selectivity and long stability. The present OMM (M: Co, Fe)-NGR is a promising nanomaterial for electrochemical biosensing application.