▎ 摘 要
A cost-effective and long stability catalyst with decent electrochemical activity would play a crucial role in accelerating applications of metal-air batteries. Here, we report quintuple nitrogen and oxygen co-coordinated Zr sites on graphene (Zr-N/O-C) by using a ball-milling, solid-solution-assisted pyrolysis method. The as prepared Zr-N/O-C catalyst with 2.93 wt % Zr shows a half-wave potential of 0.910 V, an onset potential of 1.000 V in 0.1 M KOH, impressive durability (95.1% remains after 16,000 s), and long-term stability (5 mV loss over 10,000 cycles). Zn-air batteries with the Zr-N/O-C electrode exhibit a maximum power density of 217.9 mW cm(-2) and a high cycling life of over 1,000 h, exceeding the counterpart equipped with a Pt/C benchmark. Theoretical simulations demonstrate that nitrogen and oxygen dual-ligand confinement effectively tunes the d-band center and balances key intermediates binding energy of intrinsic quintuple coordination Zr sites.