• 文献标题:   Nonlinear thermal transport in graphene nanoribbon: A molecular dynamics study
  • 文献类型:   Article
  • 作  者:   YALI RP, MEHRI A, JAMAATI M
  • 作者关键词:   thermal conductivity, powerlaw, nonlinearity, gnr, nemd
  • 出版物名称:   PHYSICA ASTATISTICAL MECHANICS ITS APPLICATIONS
  • ISSN:   0378-4371 EI 1873-2119
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.physa.2022.128416 EA DEC 2022
  • 出版年:   2023

▎ 摘  要

Effects of different factors on the thermal conductivity of graphene nanoribbons (GNRs) is investigated using nonequilibrium molecular dynamics (NEMD) simulations with LAMMPS code, taking advantage of the optimized Tersoff interatomic potential. The influences of temperature, size, and layer number on thermal transport are considered for both zigzag and armchair GNRs. It is found that increasing the size (length<40 nm and width<10 nm) enhances the thermal conductivity of both GNR types by a power -law relationship at room temperature. In contrast, the thermal conductivity of GNRs drastically drops as the temperature rises in the range of 50-500 K. The power-law reduction of conductivity, owing to the temperature increase, is faster in zigzag GNR than in armchair one. In addition, in the range of 1-10 layers, the thermal conductivity experiences a power-law decrease with increasing number of GNRs layers because of the out-of-plane scattering of phonons. Our results reveal how boundary scattering, growing phonon number and Umklapp scattering govern nonlinear thermal transport mechanism. This study also demonstrates a dramatic influence of the edge structure of GNR on thermal conduction.(c) 2022 Elsevier B.V. All rights reserved.