• 文献标题:   Impact of synthesis routes on the chemical, optical, and electrical properties of graphene oxides and its derivatives
  • 文献类型:   Article
  • 作  者:   KIM YJ, KAHNG YH, KIM N, LEE JH, HWANG YH, LEE SM, CHOI SM, KIM WB, LEE K
  • 作者关键词:   graphene, graphene oxide, reduced graphene oxide, transparent electrode, thermal reduction
  • 出版物名称:   CURRENT APPLIED PHYSICS
  • ISSN:   1567-1739 EI 1878-1675
  • 通讯作者地址:   Chonnam Natl Univ
  • 被引频次:   8
  • DOI:   10.1016/j.cap.2015.08.008
  • 出版年:   2015

▎ 摘  要

Solution-processed graphene oxides in their reduced forms are prominent prospective functional materials for organic optoelectronics. For graphene oxide synthesis, several methods have been developed, which induce varying properties in their products. However, the dependence of the graphene oxide properties on their synthesis methods has rarely been studied, hindering the selection of the optimum synthesis route for a target application. In this study, we report our study results on the properties of synthesized graphene oxides and their reduced forms created using several synthesis methods, such as the modified Hummers' method, the improved method, and the Staudenmaier's method as well as from two commercial sources, Angstron Material, Inc. and Graphos, Inc. Focusing on the transparent electrode application, the properties of thin films were investigated using UV-visible spectroscopy, Hall measurements, atomic force microscopy, Raman spectroscopy, work function measurements, and X-ray photoelectron spectroscopy. Our results reveal significant morphological, elemental, structural, and optoelectrical property variations among the as-prepared and reduced thin films of graphene oxides by their synthesis methods. In addition, the results show that the graphene oxides synthesized using the modified Hummers' method and the product from Angstron Material, Inc. are the most suitable materials for the transparent electrode application. (C) 2015 Elsevier B.V. All rights reserved.