• 文献标题:   Optical and electrical characterizations of graphene nanoplatelet coatings on low density polyethylene
  • 文献类型:   Article
  • 作  者:   PALOMBA M, LONGO A, CAROTENUTO G, COSCIA U, AMBROSONE G, RUSCIANO G, NENNA G, BARUCCA G, LONGOBARDO L
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF VACUUM SCIENCE TECHNOLOGY B
  • ISSN:   2166-2746
  • 通讯作者地址:   Univ Naples Federico II
  • 被引频次:   0
  • DOI:   10.1116/1.4998570
  • 出版年:   2018

▎ 摘  要

Coatings of graphene nanoplatelets (GNPs) were deposited on a low density polyethylene (LDPE) substrate by a micromechanical method based on rubbing graphite platelets against the surface of the polymer. Transmission electron microscopy measurements reveal that the coatings were composed of nanoplatelets containing 13-30 graphene layers. Thermal gravimetric analysis shows that the investigated GNP coatings on LDPE (GNP/LDPE) samples are thermally stable up to 250 degrees C. Optical spectra of these samples, compared to those of pristine LDPE in the ultraviolet-visible-near-infrared range, indicate an increase in both reflectance and absorptance. On the other hand, the coating is able to markedly improve the surface conductivity of the polymeric substrate, indeed in the case of electrical contacts in the coplanar configuration (1 cm long and spaced 1mm), the resistance of LDPE is 10(15) Omega, while that of GNP/LDPE is 670 Omega. Electrical measurements under white light illumination point out a decrease in the conductance and a linear behavior of the photoconductance as a function of the optical power density. GNP/LDPE materials can be used for their optical, electrical, thermal, and flexibility properties in large area plastic electronics and optoelectronics. Published by the AVS.