• 文献标题:   CoFe2O4 nanoparticles decorated onto graphene oxide and graphitic carbon nitride layers as a separable catalyst for ultrasound-assisted photocatalytic degradation of Bisphenol-A
  • 文献类型:   Article
  • 作  者:   GORMEZ O, YAKAR E, GOZMEN B, KAYAN B, KHATAEE A
  • 作者关键词:   bisphenola, photocatalyst, sonocatalyst, graphene oxide, graphitic carbon nitride, cobalt ferrite
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1016/j.chemosphere.2021.132663 EA DEC 2021
  • 出版年:   2022

▎ 摘  要

The advanced oxidation process (AOP) through ultrasound-assisted photocatalytic degradation has attracted much attention in removing emerging contaminants. Herein, CoFe2O4-GO and CoFe2O4-g-C3N4 nanocomposites were synthesized using the ultrasound-assisted co-precipitation method. TEM, XRD, XPS, EDS, SEM, and FT-IR techniques characterized the structural, morphological, and chemical properties of the synthesized nanocomposites. The analyses showed that CoFe2O4 structure was nano-sized and distributed more homogeneously in graphene oxide (GO) layers with oxygenated functional groups than graphitic carbon nitride (g-C3N4). While the efficiency of composite catalysts, as photocatalysts, for degradation of bisphenol-A (BPA) was low in the visible region in the presence of persulfate, their catalytic efficacy was higher with sonolytic activation. The addition of persulfate as an oxidant remarkably enhanced the target pollutant degradation and TOC removal of BPA solution. Both composite catalysts showed 100 % BPA removal with the synergistic effect of visible region photocatalytic oxidation and sonocatalytic oxidation in the presence of persulfate at pH 6.8. In ultrasound-assisted photocatalytic oxidation of BPA, the highest mineralization efficiencies were obtained at 2 h treatment time, pH 6.8, 16 mM PS, catalyst dosages of 0.1 g/L CoFe2O4-GO, and 0.4 g/L CoFe2O4-g-C3N4 as 62 % and 55 %, respectively. An effective catalyst was obtained by reducing e(-)/h(+) recombination and charge transfer resistance by decorating the GO layers with CoFe2O4.