• 文献标题:   Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport
  • 文献类型:   Article
  • 作  者:   ZHANG NN, ZHOU BM, LI DB, QI DF, WU YL, ZHENG HY, YANG B
  • 作者关键词:   nearinterface defect, interfacial thermal conductance, graphene, hbn
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.3390/nano12071044
  • 出版年:   2022

▎ 摘  要

Based on nonequilibrium molecular dynamics (NEMD) and nonequilibrium Green's function simulations, the interfacial thermal conductance (ITC) of graphene/h-BN in-plane heterostructures with near-interface defects (monovacancy defects, 585 and f5f7 double-vacancy defects) is studied. Compared to pristine graphene/h-BN, all near-interface defects reduce the ITC of graphene/h-BN. However, differences in defective structures and the wrinkles induced by the defects cause significant discrepancies in heat transfer for defective graphene/h-BN. The stronger phonon scattering and phonon localization caused by the wider cross-section in defects and the larger wrinkles result in the double-vacancy defects having stronger energy hindrance effects than the monovacancy defects. In addition, the approximate cross-sections and wrinkles induced by the 585 and f5f7 double-vacancy defects provide approximate heat hindrance capability. The phonon transmission and vibrational density of states (VDOS) further confirm the above results. The double-vacancy defects in the near-interface region have lower low-frequency phonon transmission and VDOS values than the monovacancy defects, while the 585 and f5f7 double-vacancy defects have similar low-frequency phonon transmission and VDOS values at the near-interface region. This study provides physical insight into the thermal transport mechanisms in graphene/h-BN in-plane heterostructures with near-interface defects and provides design guidelines for related devices.