▎ 摘 要
Polyaniline-carbon pillared graphene composites (PGR) were successfully prepared by vacuum extraction induced self-assembly and pyrolysis method. Effects of the mass ratio of aniline monomer (AN) and graphene oxide (GO) on structure and electrochemical properties of PGR were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization. Results showed that the polyaniline-carbon pillars uniformly distributed between the graphene (GR) layers to form a three-dimensional conductive network with expanded interlayer space and nitrogen doping, which effectively improved the structural stability and electrochemical performance of GR. The as-prepared PGR with the mass ratio of AN and GO at 1 : 1 exhibits a high reversible capacity of 653 mAh/g at a current density of 100 mA/g and an excellent rate capability of 343 mAh/g at a current density of 1 A/g, all that is much higher than that of the GR electrode (101 mAh/g).