▎ 摘 要
The authors describe a novel method for the determination of artemisinin (ART) by using graphene quantum dots (GQDs) as the fluorescent probes. This method is based on the fact that ART can react with p-aminophenylboronic acid (p-ABA) to produce p-aminophenol (p-AP). While in the presence of tyrosinase (TYR), p-AP can be oxidized into 4-amino-1,2-benzoquinone, which effectively quenched the fluorescence of GQDs due to the inner filter effect (IFE). By making use of these reactions, a novel and sensitive fluorescent assay for ART has been developed. The calibration curve for the determination of ART is linear in the range of 0.1-5 mu M and 5-55 mu M with the detection limit of 33 nM, which is more sensitive than most of other methods. Some common coexisting substances including Ca2+, Na+, Mg2+, K+, PO43-, starch, lactose, dextrin, and magnesium stearat have negligible effects on the fluorescence intensity of GQDs-TYR-p-ABA system. Finally, the sensing system was successfully applied to the detection of the compound naphthoquine phosphate tablet samples with satisfactory recoveries. This IFE-based GQDs fluorescence sensing strategy is facile and sensitive for the determination of ART because neither the surface modification nor the linking between the receptor and the fluorophore is required.