• 文献标题:   Removal of methanol from water by capacitive deionization system combined with functional nanoporous graphene membrane
  • 文献类型:   Article
  • 作  者:   HAN Y, ZHAO JY, GUO XQ, JIAO TF
  • 作者关键词:   capacitive deionization, graphene membrane, hydrogenpassivated pore, methanol removal, molecular dynamic
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.chemosphere.2022.137011 EA OCT 2022
  • 出版年:   2023

▎ 摘  要

In this article, molecular dynamics simulations were used to examine the feasibility of capacitive deionization (CDI) system combined with a functionalized nanoporous graphene (NPG) membrane for removing methanol from water. The radial distribution function of electrode-methanol and methanol-water, the self-diffusion co-efficient of methanol and water, the water density near the membrane, the interaction energy between methanol and membrane, the hydrogen bond structure between methanol and water, and the 2D density map of methanol molecules near the membrane under different electric field (EF) (to simulate the effect of capacitance) were examined to evaluate the separation performance of NPG membranes with hydrogen-passivated pores for methanol. The findings show that an EF with appropriate strength can decrease the amount of water molecules near methanol, increase the self-diffusion coefficient of methanol and water, increase hydrophobicity of hy-drogenated pores, decrease the interaction between the NPG membrane and methanol, and weaken hydrogen bond interaction between water and methanol molecules. All these findings suggest that an appropriate EF can improve the NPG membrane's permeability to methanol, and verify the feasibility of CDI system combined with hydrogenated NPG membrane to remove methanol from water. This study is expected to propose a potential CDI application technology, and also give a novel idea for the removal of small organic molecules in water by functionalized NPG membrane.