• 文献标题:   Network model for periodically strained graphene
  • 文献类型:   Article
  • 作  者:   DE BEULE C, PHONG VT, MELE EJ
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1103/PhysRevB.107.045405
  • 出版年:   2023

▎ 摘  要

The long-wavelength physics of monolayer graphene in the presence of periodic strain fields has a natural chiral scattering network description. When the strain field varies slowly compared to the graphene lattice and the effective magnetic length of the induced valley pseudomagnetic field, the low-energy physics can be understood in terms of valley-polarized percolating domain-wall modes. Inspired by a recent experiment, we consider a strain field with threefold rotation and mirror symmetries but without twofold rotation symmetry, resulting in a system with the connectivity of the oriented kagome network. Scattering processes in this network are captured by a symmetry-constrained phenomenological S matrix. We analyze the phase diagram of the kagome network and show that the bulk physics of the strained graphene can be qualitatively captured by the network when we account for a percolation transition at charge neutrality. We also discuss the limitations of this approach to properly account for boundary physics.