▎ 摘 要
In this research, the nanocomposites, CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide (RGO) nanosheets, are successfully synthesized via liquid-phase reduction reactions combined with a sol-gel route. The structures, morphologies, chemical composition and magnetic properties of CoNi nanoparticles, CoNi/SiO2 core-shell nanoparticles and RGO/CoNi/SiO2 nanocomposites have been investigated in exhaustive detail. The electromagnetic (EM) parameters of RGO/CoNi/SiO2 nanocomposites are measured using a vector network analyzer. The results reveal that the RGO/CoNi/SiO2 nanocomposites display enhanced EM wave absorption properties with the maximum reflection loss (R-L) of -46.3 dB at 6.2 GHz with a matching thickness of 4.2 mm. Additionally, the absorption bandwidth corresponding to the R-L less than -10 dB is up to 14.3 GHz (3.7-18.0 GHz) with a matching thickness range of 2.0-5.0 mm. To comprehensively consider the absorption bandwidth and the maximum R-L, the integrational method which defines AS as the integration area of RL (R-L < -10 dB) and RE as EM wave absorption efficiency is adopted to reveal that the RGO/CoNi/SiO2 nano composites exhibit the excellent absorption properties with the matching thickness of only 2.0 mm. Accordingly, the as-prepared RGO/CoNi/SiO2 nanocomposites could be applied as promising EM wave absorption materials.