• 文献标题:   Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms
  • 文献类型:   Article
  • 作  者:   MAJIDI MA, SIREGAR S, RUSYDI A
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Natl Univ Singapore
  • 被引频次:   7
  • DOI:   10.1103/PhysRevB.90.195442
  • 出版年:   2014

▎ 摘  要

We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.