• 文献标题:   Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation
  • 文献类型:   Article
  • 作  者:   DESHMUKH K, AHAMED MB, SADASIVUNI KK, PONNAMMA D, DESHMUKH RR, TRIMUKHE AM, PASHA SKK, POLU AR, ALMAADEED MAA, CHIDAMBARAM K
  • 作者关键词:   hexagonal boron nitride, thermal conductivity, electronic encapsulation
  • 出版物名称:   JOURNAL OF POLYMER RESEARCH
  • ISSN:   1022-9760 EI 1572-8935
  • 通讯作者地址:   BS Abdur Rahman Univ
  • 被引频次:   22
  • DOI:   10.1007/s10965-017-1189-4
  • 出版年:   2017

▎ 摘  要

The recent surge in graphene research has stimulated interest in the investigation of various two-dimensional (2D) nanomaterials, including 2D boron nitride (BN) nanostructures. Among these, hexagonal boron nitride nanosheets (h-BNNs; also known as white graphene, as their structure is similar to that of graphene) have emerged as potential nanofillers for preparing thermally conductive composites. In this work, hexagonal boron nitride nanoparticles (h-BNNPs) approximately 70 nm in size were incorporated into a polyvinylidene fluoride (PVDF) matrix with different loadings (0-25 wt.%). The PVDF/h-BNNP nanocomposites were prepared by a solution blending technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM) and scanning electron microscopy (SEM). In addition, the thermal conductivity and dielectric properties of the nanocomposites were investigated. The incorporation of h-BNNPs in the PVDF matrix resulted in enhanced thermal conductivity. The highest value, obtained at 25 wt.% h-BNNP loading, was 2.33 W/mK, which was five times that of the neat PVDF (0.41 W/mK). The thermal enhancement factor (TEF) at 5 wt.% h-BNNP loading was 78%, increasing to 468% at 25 wt.% h-BNNP loading. The maximum dielectric constant of approximately 36.37 (50Hz, 150 A degrees C) was obtained at 25 wt.% h-BNNP loading, which was three times that of neat PVDF (11.94) at the same frequency and temperature. The aforementioned results suggest that these multifunctional and high-performance nanocomposites hold great promise for application in electronic encapsulation.