• 文献标题:   Sub-20 nm anatase particles uniformly anchored on graphene oxide and reduced graphene oxide nanosheets and their photocatalytic oxidation and Li-ion storage capabilities
  • 文献类型:   Article
  • 作  者:   LIU SH, WEN L, CHEN JL, LI JG, SUN XD, LI XD
  • 作者关键词:   nanocomposite, tio2, batterie, nanocarbon material
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:   Northeastern Univ
  • 被引频次:   2
  • DOI:   10.1016/j.ceramint.2015.11.057
  • 出版年:   2016

▎ 摘  要

Nanosized anatase TiO2 particles anchored on nanocarbon substrates have great potential for practical applications in high-performance lithium ion batteries and efficient photocatalysts. The synthesis of this material usually utilizes calcination to crystallize amorphous titania, which normally causes the formation of aggregates and some side effects. In this work, we demonstrated that sub-20 nm anatase particles uniformly anchored on graphene oxide and reduced graphene oxide nanosheets in aqueous solution at a temperature of 90 degrees C and atmospheric pressure, without further calcination. The photocatalytic oxidation activity and electrochemical properties of graphene oxide/anatase TiO2 (GO/A) and reduced graphene oxide/anatase TiO2 (RGO/A) were comparatively investigated. We found that GO/A showed higher photocatalytic oxidation activity than RGO/A under UV light irradiation. Graphene oxide accepted electrons and suffered reduction, which finally decreased GO/A's photocatalytic oxidation activity to an extent similar to RGO/A. We also found that, as anode material for Li-ion battery, the specific capacity of RGO/A was nearly three times that of GO/A at the same current rate. This study will inspire better design of metal oxide/nanocarbon nanocomposites for high performance lithium ion battery and photocatalysis applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.