▎ 摘 要
Spatial separation of electrons and holes in graphene gives rise to the existence of plasmon waves confined to the boundary region. A theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths smaller than the size of charged domains, plasmon dispersion is found to be omega proportional to q(1/4). The frequency, velocity, and direction of propagation of guided plasmon modes can be easily controlled by the external electric field. In the presence of a magnetic field, a spectrum of additional gapless magnetoplasmon excitations is obtained. Our findings indicate that graphene is a promising material for nanoplasmonics.