▎ 摘 要
The current work focusses on investigating the appropriate wt% of graphene-nanoparticles to be incorporated into the CuO film as a dopant for enhancing its optoelectronic properties. CuO and graphene-nanoparticle-incorporated CuO films (CG) are grown by employing a chemical bath deposition (CBD) method. Graphene-nanoparticles have been incorporated at different wt% (1, 5 and 10%) with respect to the metal salt (CuCl22H2O), and a comparative study has been performed on the systematic change of the film morphology, chemical composition, oxidation states, crystallite structures and photo-sensing effects. It has been found that the morphology and the structural properties of CBD grown CuO films have been tuned by the incorporation of graphene-nanoparticles. The results show a significant enhancement in the optoelectronic properties of CG1 (1%) and CG5 (5%) films. The optical properties of the as-grown films have been observed to be modified by graphene-nanoparticle incorporation. Moreover, the electronic and optoelectronic characteristics of the fabricated p-CuO/n-Si heterojunctions have also been investigated. The enhancement of the optoelectronic properties of the CG5 sample as compared to other grown films in the present study suggests that the responsivity and photodetecting properties of the CBD grown CuO films can be improved by graphene-nanoparticle incorporation.