• 文献标题:   Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly
  • 文献类型:   Article
  • 作  者:   ZHENG JP, XING XB, EVANS JL, HE SL
  • 作者关键词:  
  • 出版物名称:   NPG ASIA MATERIALS
  • ISSN:   1884-4049 EI 1884-4057
  • 通讯作者地址:   South China Normal Univ
  • 被引频次:   9
  • DOI:   10.1038/am.2016.12
  • 出版年:   2016

▎ 摘  要

Manipulating large numbers of a variety of particles/wires is essential for many lab-on-a-chip technologies. Here we generate a planar array of optofluidic vortices with photothermal gradients from an easy-fabricated graphene oxide (GO) heater to achieve high-throughput and multiform manipulation at low excitation power and low loss. As a tweezer, each vortex can rapidly capture and confine particles without restrictions on shapes and materials. The stiffness of the confinement is easily tuned by adjusting the vortex dimension. As a motor, it can actuate any traps to persistently rotate/spin in clockwise or anti-clockwise mode. As a high-performance 'workshop', this work lays the groundwork for various self-assembly ranging from colloid-based clusters, chains, capsules, shells and ultra-thin films, through particles' surface modification and fusion, to nanowire-based architectures. Furthermore, we can create multiple vortex arrays through fabricating an array of heaters, which enables massively parallel manipulation and distributed operations all on a chip.