▎ 摘 要
Covalent modification of graphene oxide (GO) with functional chromophores plays an important role in constructing various kinds of advanced optoelectronic materials for applications in molecular diagnosis, light-harvesting, photodynamic therapy, and optical limiting. Herein, a new approach to functionalizing GO with meso-substituted formylporphyrins at GO's edge sites via imidazole condensation is developed, which affords a novel GO-imi-Por nanohybrid covalentiy-linked by imidazole rings between two components. The structure of the GO-imi-Por nanohybrid was thoroughly characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), Raman, and X-ray photoelectron spectroscopy (XPS). The red-shifted steady-state absorption, 95% quenched fluorescence, and largely enhanced nonlinear optical (NLO) properties through Z-scan studies at lower input energies demonstrate that this GO-imi-Por nanohybrid exhibits a more effective photoinduced energy/electron transfer between the intrahybrid two components and can be flexibly applied as an optical limiter candidate. This covalent edge-functionalization approach provides a new paradigm for constructing various edge-expanding GO nanohybrids with an efficient energy/electron transfer process and improved nonlinear optical effects, which would draw inspiration for engineering more adaptable optoelectronic devices.