▎ 摘 要
The problem of phonon scattering by strain fields caused by Stone-Wales (SW) defects in graphene is studied in the framework of the deformation potential approach. An explicit form of the phonon mean free path due to phonon-SW scattering is obtained within the Born approximation. The mean free path demonstrates a specific q-dependence varying as q(-3) at low wavevectors and taking a constant value at large q. The thermal conductivity of graphene nanoribbons (GNRs) is calculated with the three-phonon umklapp, SW and rough edge scatterings taken into account. A pronounced decrease of the thermal conductivity due to SW defects is found at low temperatures whereas at room temperatures and above the phonon-phonon umklapp scattering becomes dominant. A comparison with the case of vacancy defects shows that they play more important role in the reduction of the thermal conductivity in GNRs over a wide temperature range.