• 文献标题:   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries
  • 文献类型:   Article
  • 作  者:   DU ZZ, CHEN XJ, HU W, CHUANG CH, XIE S, HU AJ, YAN WS, KONG XH, WU XJ, JI HX, WAN LJ
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  • ISSN:   0002-7863
  • 通讯作者地址:   Hefei Univ Technol
  • 被引频次:   207
  • DOI:   10.1021/jacs.8b12973
  • 出版年:   2019

▎ 摘  要

Because of their high theoretical energy density and low cost, lithium-sulfur (Li-S) batteries are promising next-generation energy storage devices. The electrochemical performance of Li-S batteries largely depends on the efficient reversible conversion of Li polysulfides to Li2S in discharge and to elemental S during charging. Here, we report on our discovery that monodisperse cobalt atoms embedded in nitrogen-doped graphene (Co-N/G) can trigger the surfacemediated reaction of Li polysulfides. Using a combination of operando X-ray absorption spectroscopy and first-principles calculation, we reveal that the Co-N-C coordination center serves as a bifunctional electrocatalyst to facilitate both the formation and the decomposition of Li2S in discharge and charge processes, respectively. The S@Co-N/G composite, with a high S mass ratio of 90 wt %, can deliver a gravimetric capacity of 1210 mAh g(-1), and it exhibits an areal capacity of 5.1 mAh cm(-2) with capacity fading rate of 0.029% per cycle over 100 cycles at 0.2 C at S loading of 6.0 mg cm(-2) on the electrode disk.